
CHAPTER 1
OO Principles and Patterns

Developing more resilient systems should be our first course of action. Reuse will follow.

When designing object-oriented systems, the challenges are numerous, and the
solutions are various. How do we identify an approach that will help ensure we
are creating an extensible, robust, and easily maintainable system? One way is
by using design patterns. Design patterns are proven design solutions that can
be tailored to fit the context of a particular design challenge. In essence, they are
reusable design templates. While the notion of patterns has hit mainstream
development since the seminal work published in 1995 by the Gang of Four
[GOF95], the number of patterns available has become almost unmanageable.
So many patterns are available today that attempting to find a pattern that can
solve difficult design challenges conceivably could take longer than discovering
a new solution, which if designed efficiently, is probably documented as a pat-
tern somewhere anyway. When we can’t find a pattern that solves our chal-
lenges, we can take an approach during design that will ensure we are solving
our challenges correctly, given the absence of a readily available pattern. Such
approaches are based on some fundamental principles of object orientation.

While these fundamental principles can provide helpful guidance when
developing object-oriented software, our understanding of object orientation
must come first. It is virtually impossible to apply a principle when we don’t
fully understand the value of that principle. Therefore, we must understand not
only the principles, but also the true benefits of object orientation, as well as the
goals that these benefits enable us to effectively and gracefully achieve.

1

c01.qxd p001-038 11/20/01 9:47 AM Page 1

1.0 Principles,Patterns,and the OO Paradigm
By this time, we’ve all been saturated with the benefits of objects. Reuse is the
Holy Grail of object orientation. Unfortunately, a lot of the works discussing
object orientation exist at such a theoretical level that they can be difficult to
interpret and apply pragmatically, or these works exist at such a detailed level
that it can be difficult to derive a concise vision of the paradigm in its entirety.
Understanding concepts such as abstraction, inheritance, encapsulation, and
polymorphism is wonderful, but they are just concepts and don’t provide much
guidance in creating more reusable and highly maintainable systems. In fact,
our discussion in this book assumes a basic understanding of these terms.

We can achieve reuse, create more flexible designs, and understand the
object-oriented paradigm more thoroughly by studying and applying patterns.
But even patterns don’t serve as a guiding set of principles that are universally
applicable, and with the proliferation of patterns over the past couple of years,
simply finding the most appropriate pattern can be a daunting task. This begs
some interesting questions. What are the fundamental principles of the object-
oriented paradigm? Is there a set of guiding principles that we can consistently
and faithfully apply to help us create more robust systems? In fact there is, and
we discuss the most useful principles in Section 1.1, later in this chapter.

Before we explore these principles, however, it’s important to revisit the true
benefit of object orientation. We’ve been told that reuse is the nirvana of pro-
gramming, and object orientation provides it. The reason reuse has been so
heavily touted is because it impacts the bottom line. When we use easily plug-
gable objects, which are highly reusable, we reduce the time required to develop
applications. When we develop faster, we develop more cheaply as well. Cer-
tainly, one of the benefits of object orientation can be reuse; however, it may not
be the most important benefit. In the December 2000 issue of The Rational
Edge, Walker Royce cited two interesting statistics:

• For every $1 you spend on development, you will spend $2 on
maintenance.

• Only about 15% of software development effort is devoted to pro-
gramming. [WR00]

These statistics are astounding. The cost of maintaining a system is twice that of
developing it. This being the case, we need a paradigm that facilitates system
maintenance as much as, if not more than, reuse. Granted, effectively reusing
objects can help in reducing system maintenance, but it doesn’t necessarily guar-
antee it. In fact, consider the following:

2 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 2

Given a class R that is being reused by both classes A and B, if A
requires new or modified behaviors of R, it would make sense that any
changes to R would be reflected in B as well. While this is true, what
happens if B does not desire this new behavior? What if this new behav-
ior defined for R actually broke B? In this case, we have reuse, but we
don’t have a high degree of maintenance.

You might already be thinking of ways in which this scenario can be resolved.
You might be saying that you wouldn’t have done it this way in the first place,
and there are certainly many ways to resolve the preceding problem. The granu-
larity of the method contributes greatly to the likelihood of its reusability. The
fact remains that each design is centered around flexibility, which brings us to
Royce’s second statistic cited earlier. If we are spending roughly 15 percent of
our time programming, what are we spending the remaining 85 percent of our
time doing? The answer is design, or at least variations of what many of us asso-
ciate with a traditional design phase in the software development lifecycle. Of
course, we also spend time managing requirements, planning projects, and test-
ing. Focusing strictly on the design activity, had we designed the previously
described example in a more effective manner, it is likely that our maintenance
cost would have been reduced. But it’s this design aspect that is so difficult.
Therefore, following a set of guiding principles serves us well in creating more
flexible designs.

Principles, Patterns, and the OO Paradigm 3

Inheritance and Reuse

Those readers new to object orientation typically assume a close relation
exists between inheritance and reuse. We want to debunk this myth imme-
diately. Though reuse is touted as a benefit of object orientation, it is in
fact a goal. Reuse cannot be taken for granted, nor is it guaranteed. In
reality, achieving reuse requires a lot of effort and discipline, and we’ll
spend a lot of time in this book talking about this aspect of object
orientation.

In addition, because inheritance is new to most developers exposed to
objects for the first time, a false correlation typically is made between
inheritance and reuse. While reuse can be achieved through inheritance,

(continues)

c01.qxd p001-038 11/20/01 9:47 AM Page 3

Ultimately, the design chosen for our software system will impact the main-
tainability of our system. We call a design that impacts the maintainability of
our system the software’s architecture, and designing a system with a resilient
architecture is of utmost importance. Because we know that requirements
change, the resiliency of our architecture will impact our system’s survival.
However, the ability of our system to change, or grow to meet new require-
ments, and still survive are conflicting goals, known as the architecture paradox
[SUB99].

4 CHAPTER 1 OO Principles and Patterns

(continued)

it’s not the primary benefit that inheritance provides. Inheritance can be
used to achieve multiple goals and can be categorized two different ways.
First, interface inheritance is the use of inheritance to achieve polymorphic
behavior. Many of the principles that we discuss later in this chapter (see
Section 1.1) take advantage of interface inheritance. Second, implementa-
tion inheritance is utilizing inheritance for reuse. While implementation
inheritance can be beneficial, it should not be heavily relied upon as the
mechanism of reuse. The ramifications of doing so can be detrimental.

Java is one of the first languages to make explicit the difference
between interface and implementation inheritance. In Java, the extends
keyword exemplifies implementation inheritance (with a small amount of
interface inheritance through abstract methods), whereas the implements
keyword illustrates interface inheritance. Therefore, stating that Java
doesn’t support multiple inheritance is not entirely true because Java does
support multiple inheritance of interfaces.

What Is Design?

We associate design with some activity or phase within a traditional soft-
ware development lifecycle. In this book, however, when we refer to
design, we refer to the set of best practices and principles of object orienta-
tion that are continuously applied throughout all phases of the software
development lifecycle. We even imply that lifecycle phases such as require-
ments, construction, and testing contain small slices of time where an
emphasis is placed upon the practices and principles of design.

c01.qxd p001-038 11/20/01 9:47 AM Page 4

Suppose we have a system that fulfills its full set of requirements. As the
requirements begin to change, the software begins to die, and its survival is chal-
lenged. In order to restore its survivability, we need to change the software.
With each change, the software’s architecture is compromised. As more changes
are made, the software becomes harder to maintain. Because changes become so
difficult to make, the costs associated with maintaining the system eventually
reach a point where future maintenance efforts cannot be justified or introduce
new errors. At this point, our system has lost its ability to grow, and it dies.
Therefore, as depicted in Figure 1.1, as changes increase, survivability decreases.

This experience is a frustrating one, and it’s common to blame others for
these changing requirements. However, businesses typically drive these changes,
and we shouldn’t try to place the blame elsewhere. In fact, the problem is not
with the changing requirements. We already know from experience that
requirements change. A commonly quoted adage cites three certainties in life:
death, taxes, and changing requirements. The fact that requirements change and
compromise our systems’ internal structures is not the fault of changing require-
ments, but the fault of our design. Requirements always change, and it is our
job to deal with it!

Fortunately, one of the benefits of the object-oriented paradigm is that it
enables us to easily add new data structures to our system without having to
modify the existing system’s code base. We achieve this through the power of
inheritance and polymorphism, illustrated in Section 1.1.1, later in this chapter.

Principles, Patterns, and the OO Paradigm 5

Figure 1.1 Architecture Paradox

Change

S
ur

vi
va

bi
lit

y

Higher Change
Lower Survivability

Higher Survivability
Lower Change

c01.qxd p001-038 11/20/01 9:47 AM Page 5

These data structures in the object-oriented paradigm are classes. A class encap-
sulates behavior and data, and because we can add new classes to our system
without modifying the existing code base, we can add new data and behaviors
as well. Once we understand how we can realize this power when developing
our applications, the only remaining trick is to apply this flexible concept to the
areas within the system that are most likely to change. In this chapter, we learn
how to apply this power. Throughout the remainder of this book, we examine
how to identify these areas of an application requiring this flexibility.

So how do we go about designing a system that exhibits the power to make
enhancements without having to actually modify the existing code base? The
answer is to apply fundamental principles and patterns in a consistent, disci-
plined fashion. In fact, many experienced developers have an existing repertoire
of proven techniques that they pull out of their bag of tricks to guide them dur-
ing development. Until recently, there was not an effective way for developers to
share these proven techniques with others.

Today, the software development industry abounds with patterns, of which
many categories exist. Most of us have probably heard of patterns, and we will
not devote our discussion here to duplicating work that has already been suc-
cessfully documented. Instead, we provide an executive summary on patterns,
including a few examples later in this chapter (see Section 1.3).

Patterns come in many forms. Architectural patterns focus on driving the
high-level mechanisms that characterize an entire application. Analysis patterns
help in solving domain-dependent obstacles. Design patterns help us solve a
broad range of technical design challenges. We’ll find that using patterns in con-
junction with other patterns typically contributes to the achievement of the
most flexible, robust, and resilient designs. Again, we’ll see this firsthand as we
progress throughout the book.

First, let’s explore a more formal definition of a pattern:

A design pattern systematically names, motivates, and explains a gen-
eral design that addresses a recurring design problem in object-oriented
systems. It describes the problem, the solution, when to apply the solu-
tion, and its consequences. It also gives implementation hints and
examples. The solution is a general arrangement of objects and classes
that solve the problem. The solution is customized and implemented to
solve the problem in a particular context. [GOF95]

Examining this definition further illustrates the potential of patterns. All pat-
terns have a name, which enables a developer to easily refer to, and communi-
cate with, other developers the intent of a particular pattern. Patterns help solve
design challenges that continually surface. Each situation, however, is invariably

6 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 6

different in some regards. A well-documented pattern describes the conse-
quences of using it, as well as providing hints and examples of how to effectively
utilize it. Consequently, when we use a pattern, it is unlikely that we’ll imple-
ment it in the exact same manner each time.

Patterns can be thought of as algorithms for design. Certain algorithms
have slight differences based on the implementation language, just as patterns
vary based on the context in which they’re applied. Most developers who have
written sorting routines can understand the basic algorithm associated with the
term bubble sort. Similarly, those familiar with patterns understand the struc-
ture and intent of a Strategy pattern. This naming convention is a benefit of
using patterns because they enable us to communicate complex designs more
effectively. Many more benefits are associated with the use of patterns, such as
taking advantage of proven designs, creating more consistent designs, and pro-
viding a more concrete place to start when designing.

Patterns typically are discovered by some of the most talented object-
oriented developers in the world. These patterns usually go through an intensive
review and editing cycle, and thus they are proven design solutions. The review
and editing cycle enables less-experienced developers to gain insights that will
make their own designs as flexible as those of an experienced developer. In fact,
the review and editing cycle may be the single greatest benefit associated with
using patterns, because they are essentially the collective work of the most expe-
rienced designers in the object-oriented community.

Although the value of patterns is real, realizing this value also implies
knowing which pattern is appropriate to use in a specific context, and how it
can be applied. Because of the proliferation of patterns, it can be difficult to effi-
ciently find a pattern that best fits a need. Principles, in comparison to patterns,
exist at a higher level. The majority of patterns adhere to an underlying set of
principles. In this regard, we can think of patterns as being instances of our prin-
ciples. Principles are at the heart of object-oriented design. The more patterns
we understand, the more design alternatives we can consider when architecting
our systems. It’s highly unlikely, however, that we’ll ever completely understand,
or even have knowledge of, all of the patterns that have been documented. By
adhering to a more fundamental set of principles, it’s likely that we’ll encounter
patterns that are new to us—patterns that may have been documented but that
we aren’t aware of. Or we may even discover new patterns. The point is that
while patterns provide a proven starting point when designing, principles lie at
the heart of what we need to accomplish when designing resilient, robust, and
maintainable systems. Understanding these principles not only enhances our
understanding of the object-oriented paradigm, but also helps us understand
more about patterns, when to apply them, and the foundation upon which pat-
terns are built.

Principles, Patterns, and the OO Paradigm 7

c01.qxd p001-038 11/20/01 9:47 AM Page 7

1.1 Class Principles
As mentioned previously, principles lie at the heart of the object-oriented para-
digm. The principles discussed in subsequent sections can help guide us during
design when it might be difficult to find the most applicable pattern. We typi-
cally first look to patterns in solving our challenges. However, if we are unable
to find an appropriate pattern, or are unsure if we should use a particular pat-
tern, we should always take into consideration the principles discussed in the
following sections. In fact, patterns typically are tailored slightly to fit a particu-
lar need, and these principles should be carefully considered when customizing
a pattern. Many of the principles presented here first appeared in Robert Mar-
tin’s Design Principles and Design Patterns [MARTIN00], which serves as an
excellent complement to this discussion.

When applying these principles to Java, they can be broken into two cate-
gories. The first category focuses on relationships that exist between classes.
These principles typically form the foundation of many design patterns. The
second category of principles focuses on relationships between packages. These
principles form the foundation of many architectural patterns. Keep in mind
that at this point, we are primarily concerned with understanding the core con-
cepts present within these principles. Application of these principles typically is
dependent on a set of guiding heuristics, which we will continually elaborate on,
and refine, as we progress throughout the book.

1.1.1 Open Closed Principle (OCP)

Classes should be open for extension but closed for modification.

The Open Closed Principle (OCP) is undoubtedly the most important of all the
class category principles. In fact, each of the remaining class principles are
derived from OCP. It originated from the work of Bertrand Meyer, who is rec-
ognized as an authority on the object-oriented paradigm [OOSC97]. OCP
states that we should be able to add new features to our system without having
to modify our set of preexisting classes. As stated previously, one of the benefits
of the object-oriented paradigm is to enable us to add new data structures to our
system without having to modify the existing system’s code base.

Let’s look at an example to see how this can be done. Consider a financial
institution where we have to accommodate different types of accounts to which
individuals can make deposits. Figure 1.2 shows a class diagram with accompa-
nying descriptions of some of the elements and how we might structure a por-
tion of our system. We discuss in detail the elements that make up various

8 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 8

diagrams and the Unified Modeling Language (UML) in general in Chapter 3.
For the purposes of our discussion in this chapter, we focus on how the OCP can
be used to extend the system.

Our Account class has a relationship to our AccountType abstract class. In
other words, our Account class is coupled at the abstract level to the Account-
Type inheritance hierarchy. Because both our Savings and Checking classes
inherit from the AccountType class, we know that through dynamic binding, we
can substitute instances of either of these classes wherever the AccountType class
is referenced. Thus, Savings and Checking can be freely substituted for
AccountType within the Account class. This is the intent of an abstract class and
enables us to effectively adhere to OCP by creating a contract between the
Account class and the AccountType descendents. Because our Account isn’t
directly coupled to either of the concrete Savings or Checking classes, we can
extend the AccountType class, creating a new class such as MoneyMarket, with-
out having to modify our Account class. We have achieved OCP and now can
extend our system without modify its existing code base.

Therefore, one of the tenets of OCP is to reduce the coupling between
classes to the abstract level. Instead of creating relationships between two con-
crete classes, we create relationships between a concrete class and an abstract
class, or in Java, between a concrete class and an interface. When we create an

Class Principles 9

Figure 1.2 Open Closed Principle (OCP)

Account is a
class.

Savings and Checking each
inherit from AccountType.

AccountType is an
instance variable
within Account.

AccountType is an
abstract class with an
abstract deposit method.

Account

+Account(in acctType:string)
+deposit(in amt:integer)

0 . . 1 *

AccountType

+deposit(in amt:integer)

Savings

+deposit(in amt:integer)

Checking

+deposit(in amt:integer)

c01.qxd p001-038 11/20/01 9:47 AM Page 9

extension of our base class, assuming we adhere to the public methods and
their respective signatures defined on the abstract class, we essentially have
achieved OCP. Let’s take a look at a simplified version of the Java code for Fig-
ure 1.2, focusing on how we achieve OCP, instead of on the actual method
implementations.

public class Account {
private AccountType _act;

public Account(String act) {
try {

Class c = Class.forName(act);
this._act = (AccountType) c.newInstance();

} catch (Exception e) {
e.printStackTrace();

}
}

public void deposit(int amt) {
this._act.deposit(amt);

}
}

Here, our Account class accepts as an argument to its constructor a String rep-
resenting the class we wish to instantiate. It then uses the Class class to dynam-
ically create an instance of the appropriate AccountType subclass. Note that we
don’t explicitly refer to either the Savings or Checking class directly.

public abstract class AccountType {
public abstract void deposit(int amt);

}

This is the abstract AccountType class that serves as the contract between our
Account class and AccountType descendents. The deposit method is the
contract.

public class CheckingAccount extends AccountType {
public void deposit(int amt) {

System.out.println();
System.out.println();
System.out.println("Amount deposited in checking account: "

+ amt);
System.out.println();
System.out.println();

}
}
public class SavingsAccount extends AccountType {

public void deposit(int amt) {
System.out.println();
System.out.println();

10 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 10

System.out.println("Amount deposited in savings account: "
+ amt);

System.out.println();
System.out.println();

}
}

Each of our AccountType descendents satisfies the contract by providing an
implementation for the deposit method. In the real world, the behaviors of the
individual deposit methods would be more interesting and, given the preceding
design, would be algorithmically different.

1.1.2 Liskov Substitution Principle (LSP)

Subclasses should be substitutable for their base classes.

We mentioned in our previous discussion that OCP is the most important of the
class category principles. We can think of the Liskov Substitution Principle
(LSP) as an extension to OCP. In order to take advantage of LSP, we must
adhere to OCP because violations of LSP also are violations of OCP, but not
vice versa. LSP is the work of Barbara Liskov and is derived from Bertrand
Meyer’s Design by Contract.1 In its simplest form, LSP is difficult to differentiate
from OCP, but a subtle difference does exist. OCP is centered around abstract
coupling. LSP, while also heavily dependent on abstract coupling, is in addition
heavily dependent on preconditions and postconditions, which is LSP’s relation
to Design by Contract, where the concept of preconditions and postconditions
was formalized.

A precondition is a contract that must be satisfied before a method can be
invoked. A postcondition, on the other hand, must be true upon method com-
pletion. If the precondition is not met, the method shouldn’t be invoked, and if
the postcondition is not met, the method shouldn’t return. The relation of pre-
conditions and postconditions has meaning embedded within an inheritance
relationship that isn’t supported within Java, outside of some manual assertions
or nonexecutable comments. Because of this, violations of LSP can be difficult
to find.

To illustrate LSP and the interrelationship of preconditions and postcondi-
tions, we need only consider how Java’s exception-handling mechanism works.
Consider a method on an abstract class that has the following signature:

Class Principles 11

1A concept that Bertrand Meyer built into the Eiffel programming language and discusses in
Object-Oriented Software Construction. See [OOSC97].

c01.qxd p001-038 11/20/01 9:47 AM Page 11

public abstract deposit(int amt) throws InvalidAmountException

Assume in this situation that our InvalidAmountException is an exception
defined by our application, is inherited from Java’s base Exception class, and
can be thrown if the amount we try to deposit is less than zero. By rule, when
overriding this method in a subclass, we cannot throw an exception that exists
at a higher level of abstraction than InvalidAmountException. Therefore, a
method declaration such as the following isn’t allowed:

public void deposit(int amt) throws Exception

This method declaration isn’t allowed because the Exception class thrown in
this method is the ancestor of the InvalidAmountException thrown previ-
ously. Again, we can’t throw an exception in a method on a subclass that
exists at a higher level of abstraction than the exception thrown by the base
class method we are overriding. On the other hand, reversing these two
method signatures would have been perfectly acceptable to the Java compiler.
We can throw an exception in an overridden subclass method that is at a
lower level of abstraction than the exception thrown in the ancestor. While
this does not correspond directly to the concept of preconditions and postcon-
ditions, it does capture the essence. Therefore, we can state that any precondi-
tion stipulated by a subclass method can’t be stronger than the base class
method. Also, any postcondition stipulated by a subclass method can’t be
weaker than the base class method.

To adhere to LSP in Java, we must make sure that developers define precon-
ditions and postconditions for each of the methods on an abstract class. When
defining our subclasses, we must adhere to these preconditions and postcondi-
tions. If we do not define preconditions and postconditions for our methods, it
becomes virtually impossible to find violations of LSP. Suffice it to say, in the
majority of cases, OCP will be our guiding principle.

1.1.3 Dependency Inversion Principle (DIP)

Depend upon abstractions.Do not depend upon concretions.

The Dependency Inversion Principle (DIP) formalizes the concept of abstract
coupling and clearly states that we should couple at the abstract level, not at the
concrete level. In our own designs, attempting to couple at the abstract level can
seem like overkill at times. Pragmatically, we should apply this principle in any
situation where we’re unsure whether the implementation of a class may change
in the future. But in reality, we encounter situations during development where

12 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 12

we know exactly what needs to be done. Requirements state this very clearly,
and the probability of change or extension is quite low. In these situations,
adherence to DIP may be more work than the benefit realized.

At this point, there exists a striking similarity between DIP and OCP. In
fact, these two principles are closely related. Fundamentally, DIP tells us how
we can adhere to OCP. Or, stated differently, if OCP is the desired end, DIP is
the means through which we achieve that end. While this statement may seem
obvious, we commonly violate DIP in a certain situation and don’t even real-
ize it.

When we create an instance of a class in Java, we typically must explicitly
reference that object. Only after the instance has been created can we flexibly
reference that object via its ancestors or implemented interfaces. Therefore, the
moment we reference a class to create it, we have violated DIP and, subse-
quently, OCP. Recall that in order to adhere to OCP, we must first take advan-
tage of DIP. There are a couple of different ways to resolve this impasse.

The first way to resolve this impasse is to dynamically load the object using
the Class class and its newInstance method. However, this solution can be
problematic and somewhat inflexible. Because DIP doesn’t enable us to refer to
the concrete class explicitly, we must use a String representation of the concrete
class. For instance, consider the following:

Class c = Class.forName("SomeDescendent");
SomeAncestor sa = (SomeAncestor) c.newInstance();

In this example, we wish to create an instance of the class SomeDescendent in
the first line but reference it as type SomeAncestor in the second line. This also
was illustrated in the code samples in Section 1.1.1, earlier in this chapter. This
is perfectly acceptable, as long as the SomeDescendent class is inherited, either
directly or indirectly, from the SomeAncestor class. If it isn’t, our application
will throw an exception at runtime. Another more obvious problem occurs

Class Principles 13

Abstract Coupling

Abstract coupling is the notion that a class is not coupled to another con-
crete class or class that can be instantiated. Instead, the class is coupled to
other base, or abstract, classes. In Java, this abstract class can be either a
class with the abstract modifier or a Java interface data type. Regardless,
this concept actually is the means through which LSP achieves its flexibil-
ity, the mechanism required for DIP, and the heart of OCP.

c01.qxd p001-038 11/20/01 9:47 AM Page 13

when we misspell the class of which we want an instance. Yet another, less
apparent, obstacle eventually is encountered when taking this approach.
Because we reference the class name as a string, there isn’t any way to pass para-
meters into the constructor of this class. Java does provide a solution to this
problem, but it quickly becomes complex, unwieldy, and error prone.

Another approach to resolving the object creation challenge is to use an
object factory. Here, we create a separate class whose only responsibility is to
create instances. This way, our original class, where the instance previously
would have been created, stays clear of any references to concrete classes, which
have been removed and placed in this factory. The only references contained
within this class are to abstract, or base, classes. The factory does, however, ref-
erence the concrete classes, which is, in fact, a blatant violation of DIP. How-
ever, it’s an isolated and carefully thought through violation and is therefore
acceptable.

Keep in mind that we may not always need to use an object factory. Along
with the flexibility of a factory comes the complexity of a more dynamic collab-
oration of objects. Concrete references aren’t always a bad thing. If the class to
which we are referring is a stable class, not likely to undergo many changes,
using a factory adds unwarranted complexity to our system. If a factory is
deemed necessary, the design of the factory itself should be given careful consid-
eration. This factory pattern has many design variants, some of which are dis-
cussed later in this book (see Chapter 9).

14 CHAPTER 1 OO Principles and Patterns

Blatant Violation: A Good Thing?

At this point, you might be wondering how a blatant violation can be a
good thing. Keep in mind that our goal should be to create a more highly
maintainable system. The tools that enable us to create these types of sys-
tems are the principles discussed in this chapter. Therefore, it is important
that each principle be given careful consideration and that violations of
these principles are conscious design decisions. While an object factory
may violate DIP, it does so at the expense of allowing another module
within the application to adhere to OCP. Therefore, any changes are local-
ized to the factory and should not impact its clients.

c01.qxd p001-038 11/20/01 9:47 AM Page 14

1.1.4 Interface Segregation Principle (ISP)

Many specific interfaces are better than a single, general interface.

Put simply, any interface we define should be highly cohesive. In Java, we know
that an interface is a reference data type that can have method declarations, but
no implementation. In essence, an interface is an abstract class with all abstract
methods. As we define our interfaces, it becomes important that we clearly
understand the role the interface plays within the context of our application. In
fact, interfaces provide flexibility: They allow objects to assume the data type of
the interface. Consequently, an interface is simply a role that an object plays at
some point throughout its lifetime. It follows, rather logically, that when defin-
ing the operation on an interface, we should do so in a manner that doesn’t
accommodate multiple roles. Therefore, an interface should be responsible for
allowing an object to assume a single role, assuming the class of which that
object is an instance implements that interface.

While working on a project recently, an ongoing discussion took place as to
how we would implement our data access mechanism. Quite a bit of time was
spent designing a flexible framework that would allow uniform access to a vari-
ety of different data sources. These back-end data sources might come in the
form of a relational database, a flat file, or possibly even another proprietary
database. Therefore, our goal was not only to provide a common data access
mechanism, but also to present data to any class acting as a data client in a con-
sistent manner. Doing so clearly would decouple our data clients from the back-
end data source, making it much easier to port our back-end data sources to
different platforms without impacting our data clients. Therefore, we decided
that all data clients would depend on a single Java interface, depicted in Figure
1.3, with the associated methods.

At first glance, the design depicted in Figure 1.3 seemed plausible. After fur-
ther investigation, however, questions were raised as to the cohesion of the
RowSetManager interface. What if classes implementing this interface were read-
only and didn’t need insert and update functionality? Also, what if the data
client weren’t interested in retrieving the data, but only in iterating its already
retrieved internal data set? Exploring these questions a bit further, and carefully
considering the Interface Segregation Principle (ISP), we found that it was
meaningful to have a data structure that wasn’t even dependent on a retrieve
action at all. For instance, we may wish to use a data set that was cached in
memory and wasn’t dependent on an underlying physical data source. This led
us to the design in Figure 1.4.

Class Principles 15

c01.qxd p001-038 11/20/01 9:47 AM Page 15

16 CHAPTER 1 OO Principles and Patterns

Figure 1.3 Violation of Interface Segregation Principle (ISP)

<<interface>>
RowSetManager

+next()

+previous()

+retrieve()

+insertRow()

+updateRows()

+deleteRow()

+setProperty()

+getProperty()

DataClient

Figure 1.4 Compliance to Interface Segregation Principle (ISP)

<<interface>>
DataReader

+retrieve()

<<interface>>
DataDeleter

+deleteRow()

<<interface>>
DataInserter

+insertRow()

<<interface>>
DataManager

+updateRows()

<<interface>>
RowCursor

+next()

+previous()

+setProperty()

+getProperty()

DataClient

c01.qxd p001-038 11/20/01 9:47 AM Page 16

In Figure 1.4, we see that we have segregated the responsibilities of our
RowSetManager into multiple interfaces. Each interface is responsible for
allowing a class to adhere to a cohesive set of responsibilities. Now our appli-
cation can implement the interfaces necessary to provide the desired set of
functionality. For example, we’re no longer forced to provide data update
behavior if our class is read-only.

1.1.5 Composite Reuse Principle (CRP)

Favor polymorphic composition of objects over inheritance.

The Composite Reuse Principle (CRP) prevents us from making one of the most
catastrophic mistakes that contribute to the demise of an object-oriented sys-
tem: using inheritance as the primary reuse mechanism. The first reference to
this principle was in [GOF95]. For example, let’s turn back to a section of our
diagram in Figure 1.2. In Figure 1.5, we see the AccountType hierarchy with a
few additional attributes and methods. In this example, we have added a
method to the ancestor AccountType class that calculates the interest for each of
our accounts. This approach seems to be a good one because both our Savings
and MoneyMarket classes are interest-bearing accounts. Our Checking class is
representative of an account that isn’t interest bearing. Regardless, we justify
this by convincing ourselves that it’s better to define some default behavior on
an ancestor and override it on descendents instead of duplicating the behavior
across descendents. We know that we can simply define a null operation on our
Checking class that doesn’t actually calculate interest, and our problem is
solved. While we do want to reuse our code, and we can prevent the Checking
class from calculating interest, our implementation contains a tragic flaw. First,
let’s discuss the flaw and when it will surface. Then we’ll discuss why this prob-
lem has occurred.

Let’s consider a couple of new requirements. We need to support the addi-
tion of a new account type, called Stock. A Stock does calculate interest, but the
algorithm for doing so is different than the default defined in our ancestor
AccountType. That’s easy to solve. All we have to do is override the calcu-
lateInterest in our new Stock class, just as we did in the Checking class, but
instead of implementing a null operation, we can implement the appropriate
algorithm. This works fine until our business realizes that the Stock class is
doing extremely well, primarily because of its generous interest calculation
mechanism. It’s been decided that MoneyMarket should calculate interest using
the same algorithm as Stock, but Savings remains the same. We have three
choices in solving this problem. First, redefine the calculateInterest method

Class Principles 17

c01.qxd p001-038 11/20/01 9:47 AM Page 17

on our AccountType to implement this new algorithm and define a new method
on Savings that implements the older method. This option isn’t ideal because it
involves modifying at least two of our existing system classes, which is a blatant
violation of OCP. Second, we could simply override calculateInterest on our
MoneyMarket class, copy the code from our Stock class, and paste it in our
MoneyMarket calculateInterest method. Obviously, this option isn’t a very
flexible solution. Our goal in reuse is not copy and paste. Third, we can define a
new class called InterestCalculator, define a calculateInterest method on
this class that implements our new algorithm, and then delegate the calculation
of interest from our Stock and MoneyMarket classes to this new class. So, which
option is best?

The third solution is the one we should have used up front. Because we real-
ized that the calculation of interest wasn’t common to all classes, we shouldn’t
have defined any default behavior in our ancestor class. Doing so in any situa-
tion inevitably results in the previously described outcome. Let’s now resolve
this problem using CRP.

In Figure 1.6, we see a depiction of our class structure utilizing CRP. In this
example, we have no default behavior defined for calculateInterest in our

18 CHAPTER 1 OO Principles and Patterns

Figure 1.5 Account Structure with New Methods

MoneyMarket

+deposit(in amt:real)

Savings

+deposit(in amt:real)

Checking

+deposit(in amt:real)
+calculateInterest()

These are attributes
or, in Java, instance
variables.

null op

AccountType

-balance : real

-rate : real

+deposit(in amt: real)

+calculateInterest() balance = balance * (rate/12);

c01.qxd p001-038 11/20/01 9:47 AM Page 18

AccountType hierarchy. Instead, in our calculateInterest methods on both
our MoneyMarket and Savings classes, we defer the calculation of interest to a
class that implements the InterestCalculator interface. When we add our
Stock class, we now simply choose the InterestCalculator that is applicable
for this new class or define a new one if it’s needed. If any of our other classes
need to redefine their algorithms, we can do so because we are abstractly cou-
pled to our interface and can substitute any of the classes that implement the
interface anywhere the interface is referenced. Therefore, this solution is ulti-
mately flexible in how it enables us to calculate interest. This is an example of
CRP. Each of our MoneyMarket and Savings classes are composed of our

Class Principles 19

Figure 1.6 Compliance to Composite Reuse Principle (CRP)

+deposit(in amt:real)

+calculateInterest()

+deposit(in amt:real)

+calculateInterest()

MoneyMarket Savings Checking

+deposit(in amt:real)

AccountType

+deposit(in amt:real)
+calculateInterest()

null op

<<interface>>
InterestCalculator

+calculateInterest(in bal:real, in rate:real)

Algorithm1

+calculateInterest(in bal:real, in rate:real)

Algorithm2

+calculateInterest(in bal:real, in rate:real)

1

1

1

1

This is a Java interface.

Algorithm1 and Algorithm2
implement this interface.

c01.qxd p001-038 11/20/01 9:47 AM Page 19

InterestCalculator, which is the composite. Because we are abstractly cou-
pled, we easily see we can receive polymorphic behavior. Hence, we have used
polymorphic composition instead of inheritance to achieve reuse.

At this point, you might say, however, that we still have to duplicate some
code across the Stock and MoneyMarket classes. While this is true, the solution
still solves our initial problem, which is how to easily accommodate new inter-
est calculation algorithms. Yet an even more flexible solution is available, and
one that will enable us to be even more dynamic in how we configure our
objects with an instance of InterestCalculator.

In Figure 1.7, we have moved the relationship to InterestCalculator up
the inheritance hierarchy into our AccountType class. In fact, in this scenario,
we are back to using inheritance for reuse, though a bit differently. Our
AccountType knows that it needs to calculate interest, but it doesn’t know how
actually to do it. Therefore, we see a relationship from AccountType to our
InterestCalculator. Because of this relationship, all accounts calculate inter-
est. However, if one of our algorithms is a null object [PLOP98] (that is, it’s an
instance of a class that implements the interface and defines the methods, but
the methods have no implementation), and we use the null object with the
Savings class, we now can state that all of our accounts need to calculate inter-
est. This substantiates our use of implementation inheritance. Because each
account calculates it differently, we configure each account with the appropriate
InterestCalculator.

20 CHAPTER 1 OO Principles and Patterns

Figure 1.7 Refining CRP Compliance with Ancestral Relationship

+deposit(in amt:real) +deposit(in amt:real)

MoneyMarket

+deposit(in amt:real)

Savings

+deposit(in amt: real)

+calculateInterest()

AccountType

Checking

<<interface>>

InterestCalculator

+calculateInterest(in bal:real, in rate:real)

Algorithm1

+calculateInterest(in bal:real, in rate:real)

Algorithm2

+calculateInterest(in bal:real, in rate:real)

1

c01.qxd p001-038 11/20/01 9:47 AM Page 20

So how did we fall into the original trap depicted in Figure 1.5? The prob-
lem lies within the inheritance relationship. Inheritance can be thought of as a
generalization over a specialization relationship—that is, a class higher in the
inheritance hierarchy is a more general version of those inherited from it. In
other words, any ancestor class is a partial descriptor that should define some
default characteristics that are applicable to any class inherited from it. Violat-
ing this convention almost always results in the situation described previously.
In fact, any time we have to override default behavior defined in an ancestor
class, we are saying that the ancestor class is not a more general version of all of
its descendents but actually contains descriptor characteristics that make it too
specialized to serve as the ancestor of the class in question. Therefore, if we
choose to define default behavior on an ancestor, it should be general enough to
apply to all of its descendents.

In practice, it’s not uncommon to define a default behavior in an ances-
tor class. However, we should still accommodate CRP in our relationships.
This is easy to see in Figure 1.6. We could have easily defined default
behavior in our calcuateInterest method on the AccountType class. We
still have the flexibility, using CRP, to alter the behaviors of any of our
AccountType classes because of the relationship to InterestCalculator. In
this situation, we may even choose to create a null op InterestCalculator
class that our Checking class uses. This way, we even accommodate the
likelihood that Savings accounts can someday calculate interest. We have
ultimate flexibility.

1.1.6 Principle of Least Knowledge (PLK)

For an operation O on a class C, only operations on the following objects should
be called: itself, its parameters, objects it creates, or its contained instance objects.

The Principle of Least Knowledge (PLK) is also known as the Law of Demeter.
The basic idea is to avoid calling any methods on an object where the refer-
ence to that object is obtained by calling a method on another object. Instead,
this principle recommends we call methods on the containing object, not to
obtain a reference to some other object, but instead to allow the containing
object to forward the request to the object we would have formerly obtained a
reference to. The primary benefit is that the calling method doesn’t need to
understand the structural makeup of the object it’s invoking methods upon.
The following examples show a violation of PLK and an implementation that
does not violate PLK:

Class Principles 21

c01.qxd p001-038 11/20/01 9:47 AM Page 21

22 CHAPTER 1 OO Principles and Patterns

//violation of PLK

public class Sample {

public void lawTest(AnObject o) {

AnotherObject ao = o.get();

ao.doSomething();

}

}

//adherence to PLK. Note that AnObject

//would forward the doSomething request

//on to AnotherObject, which it con-

tains.

public class Sample {

public void lawTest(AnObject o) {

o.doSomething();

}

}

The obvious disadvantage associated with PLK is that we must create many
methods that only forward method calls to the containing classes internal com-
ponents. This can contribute to a large and cumbersome public interface. An
alternative to PLK, or a variation on its implementation, is to obtain a reference
to an object via a method call, with the restriction that any time this is done, the
type of the reference obtained is always an interface data type. This is more flex-
ible because we aren’t binding ourselves directly to the concrete implementation
of a complex object, but instead are dependent only on the abstractions of
which the complex object is composed. In fact, this is how many classes in Java
typically resolve this situation.

Consider the java.sql.ResultSet interface. After an SQL statement has
been executed, Java stores the SQL results in a ResultSet object. One of our
options at this point is to query this ResultSet object and obtain metainforma-
tion pertaining to this set of data. The class that contains this metainformation
is the ResultSetMetaData class, and it’s contained within the ResultSet class. If
PLK were adhered to in this situation, we wouldn’t directly obtain a reference to
this ResultSetMetaData class, but instead would call methods on the Result-
Set, which subsequently would forward these requests to the ResultSetMeta-
Data class. However, this would result in an explosion of methods on the
ResultSet class. Therefore, a getResultSetMetaData method on ResultSet
does return a reference to ResultSetMetaData. At first, this would seem to be a
blatant violation of PLK. However, ResultSetMetaData is an interface data type
and, therefore, we aren’t bound to any concrete implementation contained
within ResultSet. Instead, we’re coupled only to the abstractions of which
ResultSet is composed.

This solution is a perfectly acceptable alternative to a direct implementation
of PLK. The caveat is that careful consideration should be given to DIP. As long
as this is done, we shouldn’t have increased maintenance problems. The most
important aspect is that we’re bound, or coupled, to the internal structure of a
class at an abstract level. Therefore, the class that is obtaining the reference to
the object via the method call is taking advantage of DIP and, subsequently,
OCP.

c01.qxd p001-038 11/20/01 9:47 AM Page 22

1.2 Package Principles
Throughout the course of development, it’s common for development teams to
spend a chunk of time designing the system. Much of this time, however, is
spent creating a flexible class structure, with little time actually being devoted to
the system’s package structure. The relationships between packages typically
aren’t considered, and the allocation of classes to packages isn’t carefully
thought through. This carelessness is unfortunate because the relationships
between packages are just as important as the relationships between the classes.
The relationships between the packages of an application are referred to as the
package dependencies, and we next examine principles that help to create a
more robust dependency structure between our packages.

1.2.1 Package Dependency

It isn’t uncommon to find that many developers haven’t realized that relation-
ships do exist among the packages within a Java application. The dependencies
between packages often go unnoticed. Logically, however, if a class contains
relationships to other classes, then packages containing those classes also must
contain relationships to other packages. These package relationships can tell us
a great deal about the resiliency of our system, and the principles discussed in
Sections 1.2.2 through 1.2.7 enable us to more objectively measure the robust-
ness of our package relationships.

First, let’s examine what is meant by a package dependency. In Figure 1.8,
we see a class diagram depicting two packages, A and B. Within each of these
packages exist two classes. Class Client exists in package A and class Service in
B. Simply stated, if class Client references in any way class Service, then it
must hold true that Client has a structural relationship to class Service, which
implies that any changes to the Service class may impact Client. Figure 1.8

Package Principles 23

A Subtle Relation

If class Client has a relation to class Service, then it’s obvious that the
packages containing these two classes also have a relationship, formally
known as a package dependency. It’s not so obvious that these class and
package relationships can be considered two separate views of our system.
One is a higher-level package view, the other a lower-level class view. In
addition, these two views serve to validate each other. You’ll find informa-
tion on this subject in Chapter 10.

c01.qxd p001-038 11/20/01 9:47 AM Page 23

illustrates how this relationship exists between packages, classes, and source
code.

Let’s examine this relationship from a different viewpoint. If the contents of
package A are dependent on the contents of package B, then A has a dependency
on B; and if the contents of B change, this impact may be noticeable in A. There-
fore, the relationships between packages become more apparent, and we can
conclude the following:

If changing the contents of a package P1 may impact the contents of
another package P2, we can say that P1 has a package dependency
on P2.

Packages may contain not only classes, however, but also packages. In Java,
importing the contents of a package implies we have access only to the classes
within that package and don’t have access to classes in any nested packages. The
Unified Modeling Language (UML), however, doesn’t take any formal position
on nested packages. The question of how to deal with nested packages is left to
the development team. We use the terms opaque and transparent to define the

24 CHAPTER 1 OO Principles and Patterns

Figure 1.8 Package and Corresponding Class Relationships

A

Client

package A;
import B. *;
public class Client {

private Service_s;

}

B

Service

package B;
public class Service {

}

c01.qxd p001-038 11/20/01 9:47 AM Page 24

two options. Opaque visibility implies that a dependency on a package with
nested packages doesn’t imply access to these nested packages. Transparent vis-
ibility, on the other hand, does carry with it implicit dependencies.

Because the UML takes no formal position, development teams must define
how they wish to deal with package dependencies. Several options are available.
First, teams may take their own position and state that all package dependencies
are either opaque or transparent. Any variation from this norm must be mod-
eled explicitly. In situations such as these, we recommend selecting opaque.
Adopting transparent visibility doesn’t enable us to restrict access to nested
packages. On the other hand, if opaque is adopted as a standard, we can always
explicitly model relations to nested packages on separate diagrams. For pur-
poses of discussion throughout this book, we assume all package dependency
relationships are opaque.

An alternative approach is to create stereotypes that can be attached to the
dependency relation. Consequently, visibility is determined by the stereotype
attached to the dependency. Some obvious pitfalls include those relationships
with no stereotype attached. Unless a default is assumed, we cannot know what
the transparency is, and making any assumptions can be dangerous. In addi-
tion, because only a single stereotype can be attached to any modeling element,
we may be forced to make a decision if other stereotypes are being considered
for the same dependency relationship. Let’s now turn our attention to the dis-
cussion of the package principles.

1.2.2 Release Reuse Equivalency Principle (REP)

The granule of reuse is the granule of release.

Whenever a client class wishes to use the services of another class, we must ref-
erence the class offering the desired services. This should be apparent from our
previous discussions and is the basis upon which package relationships exist. If
the class offering the service is in the same package as the client, we can refer-
ence that class using the simple name. If, however, the service class is in a differ-
ent package, then any references to that class must be done using the class’ fully
qualified name, which includes the name of the package.

We also know that any Java class may reside in only a single package.
Therefore, if a client wishes to utilize the services of a class, not only must we
reference the class, but we must also explicitly make reference to the containing
package. Failure to do so results in compile-time errors. Therefore, to deploy
any class, we must be sure the containing package is deployed. Because the
package is deployed, we can utilize the services offered by any public class

Package Principles 25

c01.qxd p001-038 11/20/01 9:47 AM Page 25

within the package. Therefore, while we may presently need the services of only
a single class in the containing package, the services of all classes are available to
us. Consequently, our unit of release is our unit of reuse, resulting in the Release
Reuse Equivalency Principle (REP). This leads us to the basis for this principle,
and it should now be apparent that the packages into which classes are placed
have a tremendous impact on reuse. Careful consideration must be given to the
allocation of classes to packages.

1.2.3 Common Closure Principle (CCP)

Classes that change together, belong together.

The basis for the Common Closure Principle (CCP) is rather simple. Adhering
to fundamental programming best practices should take place throughout the
entire system. Functional cohesion emphasizes well-written methods that are
more easily maintained. Class cohesion stresses the importance of creating
classes that are functionally sound and don’t cross responsibility boundaries.
And package cohesion focuses on the classes within each package, emphasizing
the overall services offered by entire packages.

During development, when a change to one class may dictate changes to
another class, it’s preferred that these two classes be placed in the same pack-
age. Conceptually, CCP may be easy to understand; however, applying it can
be difficult because the only way that we can group classes together in this
manner is when we can predictably determine the changes that might occur
and the effect that those changes might have on any dependent classes. Predic-
tions often are incorrect or aren’t ever realized. Regardless, placement of
classes into respective packages should be a conscious decision that is driven
not only by the relationships between classes, but also by the cohesive nature
of a set of classes working together.

1.2.4 Common Reuse Principle (CReP)

Classes that aren’t reused together should not be grouped together.

If we need the services offered by a class, we must import the package con-
taining the necessary classes. As we stated previously in our discussion of REP
(see Section 1.2.2), when we import a package, we also may utilize the ser-
vices offered by any public class within the package. In addition, changing the

26 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 26

behavior of any class within the service package has the potential to break the
client. Even if the client doesn’t directly reference the modified class in the ser-
vice package, other classes in the service package being used by clients may
reference the modified class. This creates indirect dependencies between the
client and the modified class that can be the cause of mysterious behavior. In
fact, we can state the following:

If a class is dependent on another class in a different package, then it is,
in fact, dependent on all classes in that package, albeit indirectly.

This principle has a negative connotation. It doesn’t hold true that classes that
are reused together should reside together, depending on CCP. Even though
classes may always be reused together, they may not always change together. In
striving to adhere to CCP, separating a set of classes based on their likelihood to
change together should be given careful consideration. Of course, this impacts
REP because now multiple packages must be deployed to use this functionality.
Experience tells us that adhering to one of these principles may impact the abil-
ity to adhere to another. Whereas REP and Common Reuse Principle (CReP)
emphasize reuse, CCP emphasizes maintenance.

1.2.5 Acyclic Dependencies Principle (ADP)

The dependencies between packages must form no cycles.

Cycles among dependencies of the packages composing an application should
almost always be avoided. In other words, packages should form a directed
acyclic graph (DAG). In Figure 1.9, we see two separate diagrams illustrating
the relationships among Java packages. First, let’s explore what these relation-
ships imply; then we will explain why we want to avoid cyclic dependencies. In
the diagram at the left of Figure 1.9, package A has a dependency on package B,
and package B has a dependency on package A. In Java, this implies that some
class in package A imports package B and uses a class in package B. Also, some
class in package B imports package A and uses some class. The following code
illustrates this scenario:

Package Principles 27

package A;

import B.*;

public class SomeAClass {

private ClassInB b;

}

package B;

import A.*;

public class SomeBClass {

private ClassInA a;

}

c01.qxd p001-038 11/20/01 9:47 AM Page 27

The problem with this code is that, because the classes in these packages are
coupled, the two packages become tightly coupled, which has a tremendous
impact on REP. If some class C in a different package, call it X, uses SomeBClass
in package B, it definitely implies that when package B is deployed, package A
also must be deployed because SomeBClass is coupled to SomeAClass in package
A. Neglecting to deploy package A with B results in runtime errors. In fact, were
an application to have cyclic dependencies among the packages that compose it,
REP would be so negatively impacted that all of these classes may as well exist
in the same package. Obviously, we wouldn’t desire this degree of coupling
because CCP also would be severely compromised. Regardless, when develop-
ing Java applications, we should rarely find ourselves in a situation where we
have violated the Acyclic Dependencies Principle (ADP). The consequences of
doing so are dire, and we should avoid it at all costs.

If we do identify cyclic dependencies, the easiest way to resolve them is to
factor out the classes that cause the dependency structure. This is exactly what
we have done in Figure 1.10. Factoring out the classes that caused the cyclic
dependencies has a positive impact on reuse. Now, should we decide to reuse
package B in our previous example, we still need to deploy package A`, but we
don’t need to deploy package A. The impact of this situation is not fully realized
until we take into consideration more subtle cycle dependencies, such as the
indirect cyclic dependency illustrated at the right in Figure 1.9, and its subse-
quent resolution in the diagram at right in Figure 1.10.

28 CHAPTER 1 OO Principles and Patterns

Figure 1.9 Violation of Acyclic Dependencies Principles (ADP)

A

B

A

B

C

c01.qxd p001-038 11/20/01 9:47 AM Page 28

1.2.6 Stable Dependencies Principle (SDP)

Depend in the direction of stability.

At first glance, the Stable Dependencies Principle (SDP) seems to be stating the
obvious. However, exploring more deeply, we find the SDP contains an interest-
ing underlying message. In the context of software development, stability often
is used to describe a system that is robust, bug free, and rich in structure. In a
more general sense, stability implies that an item is fixed, permanent, and
unvarying. Attempting to change an item that is stable is more difficult than
inflicting change on an item in a less stable state. Applying this richer meaning
of stability to software implies that stable software is difficult to change. Before
we revolt, however, let’s point out that simply because software is stable doesn’t
mean that it’s riddled with bugs. Stable software can certainly be robust, bug
free, and rich in structure. Subsequently, the stability of our software system
isn’t necessarily related to its quality. Less stable software can be of high quality,
yet it also can easily experience change. Stability is a characteristic indicating the
ease with which a system can undergo change, and with Java, we are most con-
cerned with the resiliency of our packages.

At this point, it’s useful to ask what makes a package difficult to change.
Aside from poorly written code, the degree of coupling to other packages has a
dramatic impact on the ease of change. Those packages with many incoming

Package Principles 29

Figure 1.10 Acyclic Dependencies Principles (ADP) Compliance

A

A‘

B

A

A‘

B

C

c01.qxd p001-038 11/20/01 9:47 AM Page 29

dependencies have many other components in our application dependent on
them. These more stable packages are difficult to change because of the far-
reaching consequences the change may have throughout all other dependent
packages. On the other hand, packages with few incoming dependencies are
easier to change. Those packages with few incoming dependencies most likely
will have more outgoing dependencies. A package with no incoming or outgo-
ing dependencies is useless and isn’t part of an application because it has no
relationships. Therefore, packages with fewer incoming, and more outgoing
dependencies, are less stable. Referring again to Figure 1.10, we can say that
package A` is a more stable package, whereas package A is a less stable package,
taking into consideration only the ease with which either of these packages can
undergo change.

In previous sections, we’ve discussed that our software should be resilient
and easily maintainable. Because of this, our assumptions lead us to believe that
all software should be less stable, but this belief isn’t always correct. Stability
doesn’t provide any implication as to the frequency with which the contents of a
package change. Those packages having a tendency to change more often
should be the packages that are less stable in nature. On the other hand, pack-
ages unlikely to experience change may be more stable, and it’s in this direction
that we should find the dependency relations flowing. Combining the concepts
of stability, frequency of change, and dependency management, we’re able to
conclude the following:

• Packages likely to experience frequent change should be less
stable, implying fewer incoming dependencies and more outgoing
dependencies.

• Packages likely to experience infrequent change may be more
stable, implying more incoming dependencies and fewer outgoing
dependencies.

It should now be obvious that we naturally depend in the direction of stability
because the direction of our dependency makes the packages more or less stable.
Any dependency introduced, however, should be a conscious decision, and one
that we know may have a dramatic impact on the stability of our application.
Ideally, dependencies should be introduced only to packages that are more sta-
ble. The conscious nature of this decision is captured by our next principle,
which describes the technique we employ to create more stable or less stable
packages.

Up to this point, we’ve been carefully referring to the stability of packages
as either more stable or less stable. Packages are typically not characterized as
stable or unstable. Instead, stability is a metric that can be measured and is a

30 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 30

numerical value between 0 and 1. The stability of a package can be measured
using some fairly straightforward calculations. Consider the following formula:

where

I represents the degree of instability associated with the package.
Ca represents the number of external classes dependent on classes internal

to this package.
Ce represents the number of internal classes dependent on classes not

internal.

A package becomes more stable as I approaches 0 because this implies no
outgoing dependencies. As I approaches 1, a package is less stable. Less stable
packages have fewer incoming dependencies, whereas more stable packages
have more incoming dependencies.

1.2.7 Stable Abstractions Principle (SAP)

Stable packages should be abstract packages.

Assuming we do wish to depend in the direction of stability, we’re left with no
choice but to structure packages so that the less stable packages exist atop a
package hierarchy, and more stable packages exist at the bottom of our package
hierarchy. The diagram in Figure 1.10 is indicative of this relationship. At this
point, it’s extremely important that the packages that are lower in our package
hierarchy must be the most resilient packages in our system, because of the far-
reaching consequences of changing them.

As we’ve discussed, one of the greatest benefits of object orientation is the
ability to easily maintain our systems. The high degree of resiliency and main-
tainability is achieved through abstract coupling. By coupling concrete classes
to abstract classes, we can extend these abstract classes and provide new sys-
tem functions without having to modify existing system structure. Conse-
quently, the means through which we can depend in the direction of stability,
and help ensure that these more depended-upon packages exhibit a higher
degree of stability, is to place abstract classes, or interfaces, in the more stable
packages. We can now state the following:

• More stable packages, containing a higher number of abstract classes,
or interfaces, should be heavily depended upon.

I
Ce

Ca Ce
=

+

Package Principles 31

c01.qxd p001-038 11/20/01 9:47 AM Page 31

• Less stable packages, containing a higher number of concrete classes,
should not be heavily depended upon.

A simple metric can help determine the degree of abstractness associated with a
package. Consider the following formula:

where

A is the abstractness of the package.
Na is the number of abstract classes and interfaces.
Nc is the number of overall classes and interfaces.

Values of A approaching 0 imply a package has few abstract classes. Values of A
approaching 1 imply a package consists of almost entirely abstract classes and
interfaces.

It is ideal if the abstractness of a package is either 1 or 0 and as far away
from 0.5 as possible. A value of 0.5 implies that a package contains both
abstract and concrete classes and, therefore, is neither stable nor instable. A goal
of all packages should be a high degree or low degree of abstractness, depending
heavily upon its role within the application.

It now should be apparent that any packages containing all abstract classes
with no incoming dependencies are utterly useless. On the other hand, packages
containing all concrete classes with many incoming dependencies are extremely
difficult to maintain. Therefore, in terms of SDP and the Stable Abstractions
Principle (SAP), we can only conclude that as abstractness (A) increases, insta-
bility (I) decreases.

1.3 Patterns
Any discussion of patterns could easily fill multiple texts. This section doesn’t
even attempt to define a fraction of the patterns that can be useful during devel-
opment. Instead, we emphasize the common components of a pattern, as well as
introduce a few common patterns that have multiple uses. As the discussion
continues throughout this book, additional patterns are introduced as the need
warrants. The discussion in this section serves two purposes. First, we describe
the intent of the patterns, a few problems that they might help resolve, and some
consequences of using the pattern. This discussion should help in understanding
how patterns can be used and the context in which they might be useful. Sec-
ond, and most important for this discussion, we explore the consistent nature
with which the principles previously discussed resurface within these patterns.

A
Na

Nc
=

32 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 32

This topic is important because, as mentioned previously, patterns may not
always be available for the specific problem domain or, if available, may possi-
bly be unknown. In these situations, a reliance upon some other fundamental
principles is important.

1.3.1 Strategy

Undoubtedly, the Strategy pattern is one of the simplest patterns and is a direct
implementation of OCP. The purpose of a Strategy, as stated in [GOF95], is to

Define a family of algorithms, encapsulate each one, and make them
interchangeable.

In fact, the InterestCalculator class in Figure 1.7 is a Strategy. The individual
Algorithm classes encapsulate the various interest calculations. These are our
family of algorithms, and they are made interchangeable by implementing the
InterestCalculator interface. This is the structural aspect of the Strategy. The
behavioral aspects of a Strategy are a bit more interesting and are typically dis-
cussed in the context of the consequences that result as the application of that
pattern. For instance, where does the concrete Strategy instance get created?
Creating it within the client class removes many of the advantages of using
Strategy, which becomes more apparent when considering the coupling that
exists between the client class and the concrete Strategy classes. In Figure 1.7, if
the AccountType class actually created the InterestCalculator Strategy, the
AccountType class would have to be modified each time a new Algorithm class
was added to our system. This solution isn’t ideal and, in fact, doing so violates
OCP, even though Strategy attempts to achieve OCP. A better approach may be
for a separate class to create the concrete Strategy. Structuring the system in this
manner is common, and the end result is the incorporation of a Factory pattern
into the system. The sole responsibility of the Factory pattern, introduced in
Chapter 9, is to create instances of objects. At this point, it could be stated that
even though a Factory is used, OCP still is violated because any new concrete
Strategy classes now require a modification of the Factory. While this statement
is true, careful consideration should be given to the ease with which this mainte-
nance has been achieved versus the strict adherence to a principle. While there
are many alternatives to this approach, we’ve found that using a Factory in this
situation is not only easily understood, but easily maintainable as well. In fact,
while it may be a small violation of OCP, the points within our application that
refer directly to the concrete Strategy classes are so small in number (one) that
we don’t even consider it a violation of OCP.

Patterns 33

c01.qxd p001-038 11/20/01 9:47 AM Page 33

Also note that when using a Strategy, we have to determine when and where
to use it. Obviously, numerous places could take advantage of a Strategy. The
trick is to keep OCP in mind. Does the system need to have this flexibility at this
point? The intent is not to use Strategy, or any other pattern for that matter, any-
where that it could be used, but to use the appropriate pattern in the appropriate
context. Should the context call for this degree of flexibility, a Strategy should be
considered. Were we not familiar with the Strategy pattern, nor any other pattern
that accommodated the need, reliance upon the fundamental principles would
have yielded similar results. In fact, our discussion in Section 1.1.5 resulted in the
derivation of the Strategy pattern, prior to ever having heard of Strategy.

1.3.2 Visitor

The Visitor pattern is not widely used, yet it serves as an excellent example illus-
trating the true power of the object-oriented paradigm. The discussion up to
this point has focused on the fact that the object-oriented paradigm allows a
system to be easily extended with new classes, without having to modify the
existing system. The structured paradigm didn’t accommodate this need in the
same flexible manner. In fact, it already has been clearly illustrated in Figure 1.7
that a system can be extended without having to modify the existing system.
What if, however, we want to add new operations to an existing set of classes?
This task is a more difficult one because defining a new method on a class pre-
sents huge obstacles if the system has made any attempt whatsoever to adhere to
the previously discussed principles. The problem is that most classes are reliant
upon interfaces, and the operations defined on the interface serve as the contract
between the client class and the service class. This is especially true with DIP,
and changing the interface results in a broken contract that can be remedied
only by correcting either the client or service class and conforming to the new
contract. A mechanism enabling us to attach new responsibilities to a class
without having to change the class on which those responsibilities operate
would be extremely valuable.

In the most rudimentary sense, consider a class that has a dynamic interface.
It may be extremely difficult to determine what methods should actually reside
on that class. As development progresses, and new operations are discovered,
the system requires constant maintenance to change the interface. In Figure
1.11, such a class is presented. The DynamicClass, however, has only a single
generic method named accept. This method accepts a parameter of type Visi-
tor. Consequently, the DynamicClass receives an instance of a concrete Visitor
at runtime. Each of the concrete Visitor classes represents a method that would
have normally been found on the DynamicClass. We can easily extend the func-

34 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 34

tionality provided by DynamicClass by defining a new concrete Visitor for
each method. In addition, any client of DynamicClass always will be dependent
only on the generic accept method. As is now evident, it’s easy to add new oper-
ations in the form of concrete Visitor classes without having to modify existing
system components.

In fact, the Visitor is structurally similar to the Strategy. However, the intent
as discussed is radically different. In fact, this is a major point that should be
addressed in any discussion on patterns. While some patterns may appear to be
structurally similar, the behavioral aspects of different patterns typically differ
radically. Therefore, it becomes extremely important to understand the dynamic
aspects of the challenge presented. The behavioral and structural differences in
the context of a system as a whole are introduced in Chapter 4 and discussed in
detail in Chapters 8 and 9.

Examining the Visitor pattern a bit further, a number of principles do sur-
face. For instance, OCP has been adhered to; however, it comes in a different
form. In this situation, it’s used to support adding new methods to a class, not to
support adding new data structures to a system. In addition to OCP, CRP is also
used because the DynamicClass is composed of the various Visitor classes. The
identification of additional principles is left as an exercise to the reader.

Up to this point, the Visitor pattern sounds fairly useful. However, as men-
tioned previously, the Visitor pattern isn’t often used because of one major
implication that it has upon our system. While the Visitor makes it easy to add
new methods to the interface of a class, it makes it extremely difficult to add
new classes. For instance, in Figure 1.11, consider the modifications required to
the system should a new DynamicClass class be required. Creating the new
DynamicClass class would be easy. It involves simply creating a new class with

Patterns 35

Figure 1.11 Visitor Pattern

DynamicClass

+accept(in visitor:Visitor)
Each of the concrete Visitors
represents a new method that would
normally have been defined on the
Dynamic Class.

DynamicClassVisitor1

+visitDynamicClass(in class: DynamicClass)

DynamicClassVisitor2

+visitDynamicClass(in class: DynamicClass)

Visitor

+visitDynamicClass(in class: DynamicClass)

c01.qxd p001-038 11/20/01 9:47 AM Page 35

an accept method. The problem resides in the proliferation of changes that
exist within our Visitor hierarchy. These modifications demand that a new
method be added to all Visitor classes in the hierarchy, including the abstract
Visitor class. Because of this, the Visitor pattern is somewhat limited in use. In
fact, caution should be used any time an implementation of the Visitor pattern is
considered. Interested readers should refer to [GOF95] for further reading on
Visitor.

1.3.3 Layers

In Java, a class can belong to only a single package. Therefore, if classes in dif-
ferent packages have relationships to each other, this implies that packages have
structural relationships among them as well. Stated more precisely, if a class C1
in package P1 has a relationship to a class C2 in package P2, we can say that the
package P1 has a relationship to package P2. The Layers pattern focuses on the
relationships that exist between packages. In layering an application, a goal is to
create packages that exist at higher-level layers and are dependent on packages
that exist in lower-level layers.

For instance, a common approach to layering an application is to define a
package containing all presentation, or user interface, classes; another contain-
ing domain classes, or business objects; and another containing an application
kernel, which may consist of database access classes. Each of these packages
exists at different layers, and the relationships between the classes contained
within each package are driven by the relationships allowed between the indi-
vidual layers. The caveat of layering our application is that no package existing
at a lower-level layer can be dependent on any package existing at a higher-level
layer. This is important and is the defining characteristic of a layered applica-
tion. In fact, this pattern is an implementation of ADP. However, while layering
an application may seem obvious, successfully doing so can be tedious. For
now, we defer any in-depth discussion on layering to Chapter 10, where we dis-
cuss architectural modeling and its various consequences. Our purpose has been
served in this chapter by illustrating that the Layers pattern is supportive of the
aforementioned ADP.

1.4 Conclusion
The object-oriented paradigm goes beyond the fundamental concepts and terms
associated with it. Of course, while understanding core terms such as polymor-
phism, encapsulation, and inheritance is important, understanding the essence
of the paradigm and pragmatically applying fundamental concepts is vital. In
this chapter, we introduced a set of principles that will serve as a guide through-

36 CHAPTER 1 OO Principles and Patterns

c01.qxd p001-038 11/20/01 9:47 AM Page 36

out the various phases of the software lifecycle, and the remainder of this book,
helping to ensure our designs are more resilient, robust, and maintainable.

Whereas principles provide a reliable foundation for our design efforts, pat-
terns can raise the level of abstraction, providing a more concrete starting point,
and allowing our designs to grow more quickly. Many benefits are associated
with taking advantage of design patterns. Because of this popularity, however, a
proliferation of patterns has saturated the marketplace, making it difficult to
separate the more useful patterns from those less so. In such situations, empha-
sizing the principles can help produce a more reliable and desired outcome.
Regardless, both principles and patterns will be given the majority of our atten-
tion as we move through our chapters.

Conclusion 37

c01.qxd p001-038 11/20/01 9:47 AM Page 37

c01.qxd p001-038 11/20/01 9:47 AM Page 38

